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Exercise 6.1 (5 points)
Let K be a field and n € N.
(a) Show that there is a matrix A € M,,x,(K) such that
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(b) Let A € M,xn(K) be arbitrary and i,j € {1,...,n}. Find matrices B,C € M, x,(K) such that
(BAC);; = A;j and (BAC),, = 0 for all tuples (I,m) # (i, j).
(c) Let J C M, xn(K) be a set of n x n-matrices over K with the following properties:
(i) J contains a matrix A # 0;
(ii) J is closed under addition, i.e., A,Be JJ= A+ B € J;
(iii) J is closed under left and right multiplication with elements from M, «,(K), i.e., for all A € J
and all X € M,,«,(K) it applies AX € J and XA € J.
Show that J = M,,«,(K) holds.

Exercise 6.2 (2 points)
Let K be a field and V a K-vector space. Let U, W be subspaces of V' such that

(i) U+ W =V and

(ii) UNnwW = {0}
Show that for each v € V there are uniquely determined elements v € U and w € W such that v = u+w.

Exercise 6.3 (5 points)

a) Let K be a field and let (V,+v), (W,4+w) be two K-vector spaces with scalar multiplication -y :
KxV =V and w: KxW — W respectively. Let U :=V x W, let +y : U x U — U be defined by
(v1,w1) +u (v2,ws) 1= (v1 +v Vo, w1 +w we) for vy, vy € V, wy,we € W, and let -y : K x U — U be
defined by A -y (v,w) := A-v o, - ww)for \e K,veV,weW.

Prove that (U,+y) with scalar multiplication -y is a K-vector space.

b) In what follows F' denotes the set of all mappings f: R — R. We equip F' with pointwise addition
(f+9)(z) :== f(x) + g(z) and R-scalar multiplication A - f(z) := (Af)(z) for f,g € F and X € R. Let
F,:={f € F|Vzx €R: f(x) = f(—x)} and F» := {f € F|Vx € R: f(x) = —f(—x)}. Show that F is
an R-vector space and that F; and F5 are subspaces of F.

Hint: Cf. Fxcercise 1.1(a)

C) Determine F1 N F2 and F1 + FQ.

Exercise 6.4 (4 points)
Let X,Y be sets. We denote by X \ Y the difference set of X and Y, i.e.,

X\Y={zeX:x¢Y}

Now let n € N. Show that Z,, \ ZX is a commutative ring without 1 if and only if n = p* for some
prime number p and some k € Ng.



